
2008 Adobe Systems Incorporated. All Rights Reserved.
1

The Role of Software Architecture
Rich Reitman
at Cornell University

February 14, 2008

2008 Adobe Systems Incorporated. All Rights Reserved.
2

The Role of Software Architecture - Agenda

What is software architecture?

How do we capture software architecture?

What do software architects do?

2008 Adobe Systems Incorporated. All Rights Reserved.
3

My Context

Commercial software companies
Rational Software: 15 4000

IBM: 300,000

Adobe Systems: 6000

Multiple roles (primarily technical or technical management)
Lead Developer, Product Architect

Software engineering manager

Chief software architect

General Manager, CTO

Mentor to software architects

2008 Adobe Systems Incorporated. All Rights Reserved.
4

What is Software Architecture?

From IEEE 1471-2000:

Software architecture is the fundamental organization of a system

embodied in its components,

their relationships to each other and the environment,

and the principles governing its design and evolution

2008 Adobe Systems Incorporated. All Rights Reserved.
5

What is Software Architecture?

From Unified Process (Jacobson, Booch, Rumbaugh):

Software architecture encompasses the set of significant decisions
about the organization of a software system

Selection of the structural elements and their interfaces

Behavior as specified in collaborations among those elements

Composition of these structural and behavioral elements into larger subsystems

Architectural style that guides this organization

2008 Adobe Systems Incorporated. All Rights Reserved.
6

What is Software Architecture?

All software systems have an architecture

Even if:

It isn’t written down

No one understands it

There are no architects

How are we going to control and evolve the architecture?

How do we capture software architecture?

2008 Adobe Systems Incorporated. All Rights Reserved.
7

Capturing Software Architecture

Problem

Solution

Architectural Quality

Benefits

Communication tool

Identify and Address system level risks

2008 Adobe Systems Incorporated. All Rights Reserved.
8

Capturing Software Architecture - Problem

Identify architecturally significant requirements

Actors

Use cases

Non-functional

Constraints

Use cases vs. User interfaces vs. User Experience

2008 Adobe Systems Incorporated. All Rights Reserved.
9

Example - “Peripheral Actors” key to adoption

Problem: provide a way of controlling the sharing of PDF files

Includes posting on the web, sending email, etc.

Solution: provide server

Supports both simple and complex policies

PDF Reader operation confirms with server

How is the system managed? (backup/recovery, load balancing, …)

Early on: different (better?) methods

Now: can use standard methods from major vendors (DB, J2EE app server, …)

Observation: be sure that all actors are considered

The (peripheral) maintainer actor was key to adoption

Cost of operation vs. benefit of capability

2008 Adobe Systems Incorporated. All Rights Reserved.
10

Capturing Software Architecture - Solution

Design a solution - 4 +1 views
Use Case - provides behavior

Logical - realization of functional requirements

Implementation

Deployment

Process

[Data - additional view used at Adobe]

Focus on architecturally significant aspects

CMU/SEI - many views; pick the ones you need

2008 Adobe Systems Incorporated. All Rights Reserved.
11

Example - Plug & Play for Military Ships

CelsiusTech

Building the same sorts of ships repeatedly

Define a software architecture based on abstraction of ship systems

New hardware physically plugs in: radar, weapons, etc.

Corresponding software plugs into the software architecture (object-oriented)

Business-Driven Decision

Reduced cost & risk

65% reuse between Danish and Swedish ships

CelsiusTech business turn around

2008 Adobe Systems Incorporated. All Rights Reserved.
12

Capturing Software Architecture - Architectural Quality

System Characteristics - realize non-functional requirements

Reliability, Security, Availability, …

Performance, Scalability, …

Testability, Maintainability, Extensibility, …

Usability, Localization, …

…

2008 Adobe Systems Incorporated. All Rights Reserved.
13

Example - Incremental Compilation

Problem: changing software interfaces causes massive recompilation

Solution: extend syntax-directed paradigm to limit recompilation

Determine impact at a granularity much finer than file

Apply technique recursively to determine all places of possible impact

Treat affected areas as non-terminal nodes associated with text needed compilation

Quality characteristics

Testability - full compilation and incremental compilation should yield same results

Randomly generate sequence of changes & confirm

Output seed along with failure to enable reproduction

Usability

1st release: syntax tree model explicit to user - best precision

2nd release: underlying model invisible - everyone uses it!

2008 Adobe Systems Incorporated. All Rights Reserved.
14

What do software architects do?

Define the architecture

Maintain the architectural integrity of the system

Assess technical risks & find risk mitigation strategies

Propose order and content of development iterations

Consult on design, implementation, integration, test

Participate in determining future system directions

Time allocation rule of thumb

50% architecting: designing, prototyping, documenting

25% getting input: users, requirements, other architectures & technologies

25% providing info: communicating the architecture, assisting

Based on “What do software architects do?”, by Philippe Kruchten

2008 Adobe Systems Incorporated. All Rights Reserved.
15

Software Architecture and Agile Development Methods

Agile Methods advocate avoiding “Big Design Up Front”
Get close to customers with working code and iterate

Enabled by: test-driven development, continuous integration & refactoring

Agile Architectural Focus (architect =? coach)
Where is there risk? - Prototype and focused reviews

What are the recurring patterns and paradigms? - Refactor

What are the system-level characteristics? - Design tests

Enable the team - communicate

Less is more - Document only what isn’t captured easily in code

Architecture and Agility are complementary

2008 Adobe Systems Incorporated. All Rights Reserved.
16

Observation: Architecture is a Social Process

Technology does not exist in a vacuum

It’s built by people.

It’s used by people.

It’s supported by people

The goal of good architecture is social understanding

The structure is well understood by the engineering community

The capabilities are well understood by the product management community

 The usage is well understood by the user community

2008 Adobe Systems Incorporated. All Rights Reserved.
17

Corollary: Architects must know their community

Social processes must adapt to their scale

For small projects, scrum can be ideal

For large projects, you need a clearly articulated process and good infrastructure

Architects must adapt to and help shape the community practice

Social processes are only effective if they are voluntary

Everyone must agree on the goals, and follow the rules

Everyone must trust that all are operating with trust and integrity

Architects can only lead if they are trusted to listen and learn

2008 Adobe Systems Incorporated. All Rights Reserved.
18

Questions

And

Discussion

2008 Adobe Systems Incorporated. All Rights Reserved.
19

bc

Revolutionizing

how the world engages

with ideas and information

